232. Synthese von Diterpenen als mögliche biogenetische Vorläufer des C₂₀-Carotinoides Crocetin

von Heidi Schurtenberger¹), Ulrich Vögeli²) und Hanspeter Pfander*

Institut für organische Chemie der Universität Bern, Freiestrasse 3, CH-3012 Bern

(21.VII.81)

Synthesis of Diterpenes as Possible Biogenetic Precursors of the C20-Carotenoid Crocetin

Summary

With regard to the investigation of the biosynthesis of the C_{20} -carotenoids in saffron the four diterpenes 6–9 were synthesized, who differ only in their degree of saturation. A detailed analysis of their 'H- and ¹³C-NMR spectra has been achieved by their mutual comparison.

Einleitung. – Aus Safran electus pulvis wurden in früheren Arbeiten [1] [2] verschiedene Glycosylester der C_{20} -Polyendicarbonsäure Crocetin (4; R = H) isoliert. Für die Biosynthese dieser Pigmente wurde schon frühzeitig die Hypothese eines oxydativen Abbaus aus einem C40-Carotinoid aufgestellt [3]. Insbesondere das Auftreten von Pikrocrocin (2) und Safranal (3), beides mögliche Abbauprodukte von Zeaxanthin (1), liess diesen Schluss als plausibel erscheinen (Schema 1). In der Zwischenzeit konnte weiter gezeigt werden, dass Pikrocrocin die gleiche Konfiguration wie Zeaxanthin $(=(3R, 3'R)-\beta, \beta$ -Carotin-3, 3'-diol) aufweist [4] [5]. Zweifel an dieser Hypothese ergaben sich jedoch, als gezeigt wurde, dass C_{30} -Carotinoide in Streptococcus faecium und Staphylococcus aureus durch Dimerisierung von Farnesylpyrophosphat (C_{15}) entstehen [6], analog zu den C_{40} -Carotinoiden, die sich durch Dimerisierung von Geranylgeranylpyrophosphat (C_{20}) bilden [7]. C_{20} -Carotinoide wie Crocetin (4) könnten analogerweise durch Dimerisierung von Geranylpyrophosphat (5) und anschliessende Dehydrierung entstehen, wobei die C_{20} -Kohlenwasserstoffe 6–9 als biogenetische Vorläufer gebildet würden. Durch anschliessende Oxydation ist eine Überführung von 9 in Crocetin (4) durchaus denkbar. Im Hinblick auf ein mögliches Vorkommen in Safran wurden daher die C_{20} -Kohlenwasserstoffe **6–9** als Referenzsubstanzen synthetisiert. Die Kenntnis ihrer physikalischen Daten sollte das Suchen nach ihrem natürlichen Vorkommen wesentlich erleichtern. Die Verbindungen 6 und 7 wurden bereits früher beschrieben

¹) Teil der Dissertation von H. Schurtenberger, Bern 1980.

²) Kantonales Laboratorium, Muesmattstrasse 19, 3012 Bern.

[8–14]. Ihre Synthese, welche auch im Hinblick auf den spektroskopischen Vergleich (insbesondere hochauflösende ¹H-NMR- und ¹³C-NMR-Spektroskopie) mit **8** und **9** erfolgte, wurde weitgehend gemäss veröffentlichten Synthesewegen realisiert.

Ergebnisse und Diskussion. – Synthese von 2,6,11,15-Tetramethyl-2,6,10,14-hexadecatetraen (=8,8'-Diapolycopersen [15] oder Digeranyl; 6). Die Synthese von 6 erfolgte nach [8], wobei für die Substitution der OH-Gruppe des Geraniols (10) CBr₄/ Ph₃P verwendet wurde [16]. Bei der Kupplungsreaktion des Geranylsulfons (11) [17] mit dem dabei entstandenen Geranylbromid (12) entstanden ca. 10% des γ -Addukts,

das aber auf der Stufe des Digeranyls abgetrennt werden konnte. Bezogen auf Geraniol (10) ergab sich eine Gesamtausbeute an 6 von 5,7%.

Synthese von 2,6,11,15-Tetramethyl-2,6,8,10,14-hexadecapentaen (=8,8'-Diapophytoen und sein 15-trans-Isomer [15]; 7). Verbindung 7 wurde wie in [14] durch eine Wittig-Reaktion des Geranyl-Wittig-Salzes 13 mit Citral (14) hergestellt. Dabei zeigte sich, dass sich 7 auch durch einfache Dimerisierung des Wittig-Salzes 13 bildet. Die beiden Reaktionswege unterschieden sich sowohl in Ausbeute als auch im (E/Z)-Verhältnis bezüglich der Konfiguration an der zentralen Doppelbindung. Während in der Wittig-Reaktion eine Ausbeute von 91% (bzgl. 14) und ein (8E/8Z)-Verhältnis von 64:36 erreicht wurde, ergab sich in der Dimerisierung eine Ausbeute von 37% und ein (8E/8Z)-Verhältnis von 55:45.

Synthese von (all-E)-2,6,11,15-Tetramethyl-2,4,6,8,10,14-hexadecahexaen (=15trans-8,8'-Diapophytofluen [15]; 8). Für die Verlängerung des Senecioaldehyds (=3-Methyl-2-butenal; 15) wurde die Horner-Reaktion gewählt, da sie ausschliesslich zum (E)-Isomeren führt. Das verwendete C₅-Horner-Reagens 16 enthielt aber bereits die (2E/2Z)-Isomeren im Verhältnis 2:1, so dass der C₁₀-Äthylester 17 als (E/Z)-Gemisch anfiel, das chromatographisch nicht getrennt werden konnte (Schema 2). Da sich aber auf der Stufe der freien C₁₀-Säure die (E/Z)-Isomeren durch fraktionierte

Kristallisation trennen liessen, wurde der Umweg über die Verseifung und anschliessende Wiederveresterung des Isomeren **18** zum C_{10} -Methylester **19** gewählt.

Durch Reduktion von 19 zum C_{10} -Alkohol 20 und anschliessende Oxydation wurde der C_{10} -Aldehyd 21 gewonnen, der zusammen mit dem Geranyl-*Wittig*-Salz 13 die gewünschte Verbindung 8 in einer Gesamtausbeute von 8,1 % (bzgl. 15) als reines (all-*E*)-Isomeres lieferte. Verbindung 8 wurde bisher in der Literatur noch nicht beschrieben.

Synthese von (all-E)-2,6,11,15-Tetramethyl-2,4,6,8,10,12,14-hexadecaheptaen (=8,8'-Diapocarotin [15]; 9). Verbindung 9 wurde nach [17] aus 3,3-Dimethylallyl-Wittig-Salz 22 und dem symmetrischen C_{10} -Dialdehyd 23 in 62% Ausbeute (bzgl. 23)

als reines (all-E)-Isomeres erhalten. Während die Verwendung von BuLi/THF als Base oder Epoxybutan unter Rückfluss hohe Anteile an (Z)-Isomerem lieferte, wurde bei der Reaktion mit Epoxybutan im Bombenrohr lediglich die kristalline (all-E)-Verbindung isoliert.

¹H- und ¹³C-NMR-Spektren. – Die in dieser Arbeit beschriebenen Verbindungen eignen sich besonders gut für eine ¹H- und ¹³C-NMR-Analyse auf der Grundlage eines sorgfältigen Spektrenvergleichs.

¹H-NMR-Spektren. Die durch Computersimulierung (Simeq II, M. J. A. de Bie, Utrecht, und Varian AG, Zug) verfeinerten Daten der 400-MHz-¹H-NMR-Spektren der Verbindungen 6, (all-E)- und (Z)-7, 8 und 9 sind in den Tab. 1 und 2 enthalten. In allen

H-Atom	6	(all- <i>E</i>)-7	(Z)- 7	8	9	
HC(1) 1,67		1,67	1,66	1,71 ^b)	1,71°)	
H-C(3)	5,23	5,23	5,22 2,14 2,14	6,04	6,05	
H-C(4)	2,13	2,14		6,58	6,60	
H-C(5)	2,13	2,14		6,37	6,39	
H-C(7)	-C(7) 5,32		6,61	6,29	6,30	
H-C(8) 2,13		6,50	6,29	6,59 6,57	6,66	
H-C(9)	C(9) 2,13		6,29		6,66	
H-C(10)	5,32	6,10	6,61 2,14	6,10	6,30	
H-C(12)	2,13	2,14		2,14	6,39	
HC(13)	-C(13) 2,13 -C(14) 5,23		2,14 5,22	2,14 5,23	6,60	
HC(14)					6,05	
H-C(16)	1,67	1,67	1,66	1,68	1,71 ^d)	
$CH_3 - C(2)$	1,56	1,56	1,54	1,68 ^b)	1,68°)	
$CH_3 - C(6)$ 1,61		1,71	1,71	1,87	1,88	
CH ₃ -C(11) 1,61		1,71	1,71 1,71		1,88	
CH ₃ -C(15)	1,56	1,56	1,54	1,56	1,68 ^d)	

Tab.1. Chemische Verschiebungen gegenüber Tetramethylsilan (=0 ppm); $\pm 0.01 \text{ ppm})$ im ¹H-NMR-Spektrum von 6, (all-E)-7, (Z)-7, 8 und 9 ((D₆)Benzol, ca. 5 mg/0,5 ml)^a)

^a) ¹H-NMR (FT) bei 400 MHz (*WH-400, Spectrospin AG*, Fällanden). ^b) ^c) ^d) Diese Zuordnungen sind vertauschbar.

				<u> </u>	
"J(H,H)	6	(all- <i>E</i>)-7	(Z)- 7	8	9
J(3,4)	7,0	7,0	7,0	11,0	11,0
J(3,5)				- 1,0	- 1,0
J(4,5)				15,0	15,2
J(7, 8)		11,1	11,1	11,0	11,2
J(7,9)		- 1,1	- 1,0	- 1,1	- 0,8
J(7,10)		0,3	0,3	0,7	0,3
J(8, 9)		14,3	10,9	14,6	14,6
J(8,10)		- 1,1	- 1,0	- 1,1	- 0,8
J(9,10)		11,1	11,1	11,0	11,2
J(12, 13)					15,2
J(12, 14)					- 1,0
J(13,14)	7,0	7,0	7,0	7,0	11,0

Tab. 2. ¹*H*, ¹*H*-Kopplungskonstanten ($\pm 0, 2$ Hz) in 6, (all-E)-7, (Z)-7, 8 und 9 ((D₆)Benzol, ca. 5 mg/0,5 ml). Vorzeichen der Kopplungskonstanten in Analogie zu [20].

5 Verbindungen erfolgte die Signalzuordnung der aliphatischen Protonen durch Vergleich der chemischen Verschiebungen. Ebenfalls durch Spektrenvergleich wurden die beiden Olefin-*t* in **6** identifiziert.

Die Verbindungen (all-*E*)-7, (*Z*)-7 und 9 zeigen in der Olefinregion jeweils 2 Signalgruppierungen, die von 2 näherungsweise unabhängigen Spinsystemen herrühren: 1) vom AA'XX'-Teil der Protonen des «Mittelstücks», also von H-C(7) bis H-C(10), und 2) von den Signalen der jeweils identischen Endgruppen, d.h. von H-C(3)/ H-C(14) bzw. von H-C(3) bis H-C(5)/H-C(12) bis H-C(14). Die beiden Teilspektren lassen sich sehr gut typisieren.

Fig. 1. Olefinregion des 400-MHz-¹H-NMR-Spektrums von (all-E)-7/(Z)-7 in (D_6) Benzol (ca. 5 mg/0,5 ml). Zur Bedeutung von \downarrow s. Text.

1) Das AA'XX'-Spektrum des «Mittelstücks» besteht nur aus 2 × 6 statt 2 × 10 Linien (vgl. Fig. 1). Diese Entartung ist darauf zurückzuführen, dass ${}^{5}J(H-C(7), H-C(10)) = J_{XX'}$ (oder $J_{AA'}$) sehr klein ist (<0,3 Hz). Damit wird $K \approx M$ und die beiden *sub-ab*-Spektren im XX'- und AA'-Teil fallen jeweils zusammen [18]. In Fig. 1 sind die *sub-ab*-Spektren mit Pfeilen (\downarrow) markiert. Als Folge dieser Vereinfachung können die aus dem Spektrum direkt ablesbaren Linienabstände, welche $K \approx M$ repräsentieren (= J_{ab} der *sub-ab*-Spektren) in guter Näherung als ${}^{3}J(H-C(8), H-C(9))$ gesetzt werden. Weil gilt ${}^{3}J^{trans} > {}^{3}J^{cis}$, lässt sich somit aus J_{ab} direkt die Konfiguration der zentralen Doppelbindung C(8), C(9) ablesen. Die AA'XX'-Spektren von (all-E)-7 und (Z)-7 illustrieren die Anwendbarkeit dieses Kriteriums (Fig. 1). Ein weiteres typisches Merkmal dieses Spinsystems ist, dass immer eines der beiden Teilspektren (AA' oder XX') eine ungewöhnlich grosse Linienbreite aufweist. Diese wird zur Hauptsache durch nicht aufgelöste ${}^{4}J_{(H,H)}$ -Kopplungen mit den Protonen der benachbarten Methylgruppen verursacht und ermöglicht dadurch eine sichere Zuordnung von H-C(7)/H-C(10).

Ein anderer charakteristischer Struktureinfluss geht ebenfalls aus Fig. 1 hervor: Die Sequenz der chemischen Verschiebung von H-C(7)/H-C(10) und H-C(8)/H-C(9) wird beim Übergang von der (9E)- zur (9Z)-Konfiguration umgekehrt. Hauptursache für diesen Effekt ist eine starke van-der-Waals-Wechselwirkung von H-C(7) und H-C(10) in der (Z)-Verbindung; sie führt zu einer kräftigen Tieffeldverschiebung dieser Protonen in (Z)-7 (6,10 ppm \rightarrow 6,61 ppm). Dieses Phänomen ist bereits seit langem aus der Carotinoidchemie bekannt und z. B. in [19] für den Fall von (3S, 3'S)-Astaxanthin und seinem 15-cis-Isomeren beschrieben.

2) In (ali-*E*)-7 und (*Z*)-7 erscheint für die restlichen Olefinprotonen H-C(3)/H-C(14) ein *t* bei 5,23 bzw. 5,22 ppm. Für Verbindung 9 ist ebenfalls ein sehr einfaches Spektrum für die Endgruppe zu beobachten: zwei *d* und ein *dd* (H-C(4)/H-C(13)). Die Zuordnung der zwei *d* erfolgt aufgrund der vicinalen Kopplungskonstanten. Sie wird bestätigt durch die chemischen Verschiebungen und die Linienbreiten (vgl. *Fig.* 2).

Fig. 2. Olefinregion des 400 MHz-¹H-NMR-Spektrums von 9 in (D_6) Benzol (ca. 5 mg/0,5 ml)

Die aus den symmetrischen Verbindungen 7 und 9 erhaltenen Daten ermöglichen eine rasche Analyse des ¹H-NMR-Spektrums von 8, welches sich formal aus je einer Hälfte der Strukturen (all-E)-7 und 9 zusammengesetzt denken lässt. Die chemischen Verschiebungen der aliphatischen und olefinischen Protonen an C(10) bis C(16) von 8 entsprechen denn auch mit Abweichungen von weniger als 0,02 ppm denjenigen von (all-E)-7 (vgl. Tab. 1). Dasselbe gilt für einen Vergleich der Protonen an C(1) bis C(7) von 8 mit denjenigen von 9. Die chemische Verschiebung der restlichen Protonen H-C(8) und H-C(9) von 8 entspricht dem Mittelwert der entsprechenden Protonen in (all-*E*)-7 und 9. Die gemäss diesem Konzept getroffenen Zuordnungen sind mit den beobachtbaren Aufspaltungsmustern (Grösse der Kopplungskonstanten, Multiplizitäten, Effekte höherer Ordnung) in voller Übereinstimmung (vgl. *Fig. 3*). Die Zuordnung von H-C(8) und H-C(9) beruht auf der Annahme einer positiven ${}^{5}J(H, H)$ -Kopplung (+ 0,7 Hz) zwischen H-C(7) und H-C(10) [20].

Fig. 3. Olefinregion des 400 MHz-¹H-NMR-Spektrums von 8 in (D_6) Benzol (ca. 5 mg/0,5 ml)

¹³C-NMR-Spektren. Alle Zuordnungen der ¹³C-NMR-chemischen Verschiebungen der 5 Verbindungen sind in *Tab.3* zu finden.

Bei der Analyse der ¹³C-NMR-Spektren erwies es sich als zweckmässig, die C-Atome in zwei Gruppen einzuteilen: 1) Sämtliche sp³- und die sp²-C-Atome der isolierten Doppelbindungen. 2) Alle sp²-C-Atome der konjugierten Doppelbindungen. Für die C-Atome der Gruppe 1) können die Zuordnungen aufgrund der bekannten Struktureffekte (α -, β - und γ -Effekt), der Signalmultiplizitäten und des Spektrenvergleichs getroffen werden. Dieser ist für die C-Atome der Gruppe 1) besonders einfach durchzuführen, da sich der Einfluss einer Strukturänderung im σ -Gerüst nur über wenige Bindungen hinweg auswirkt. So ergibt beispielsweise die «Addition» der sp³-Signale von (all-*E*)-7 und 9 direkt das beobachtete Spektrum der nicht-symmetrischen Verbindung 8. Auch die ¹³C-NMR-Daten der isolierten C(14), C(15)-Doppelbindung von 8 können direkt aus dem Spektrum von (all-*E*)-7 übernommen werden.

Wesentlich differenzierter sind die Spektren der C-Atome der Gruppe 2) zu behandeln, denn hier können Strukturänderungseffekte durch das konjugierte π -System übermittelt werden und sich damit auch an weitentfernten C-Atomen bemerkbar machen. Ein Struktureinfluss dieser Art ist der hyperkonjugative + *M*-Effekt einer Alkylgruppe, der eine Beschirmung der β -, δ -, ζ -, (etc.)-Olefin-C-Atome verursacht, die γ -, ϵ -, η -, (etc.)-Resonanzen aber kaum beeinflusst. Während in (all-*E*)-7 und (*Z*)-7 die H-tragenden C-Atome der konjugierten Doppelbindungen des «Mittelstücks» durch

C-Atom	6	(all- <i>E</i>)-7	(Z)- 7	8	9	
1	25,8	25,8	25,8	26,2	26,2	
2	130,9	131,2	131,2	134,2	134,9	
3	124,7 ^a)	124,4	124,4	126,9	126,9	
4	27,2	27,1	27,1	124,3°)	125,1 135,5	
5	40,2	40,4	40,7	135,5		
6	135,0	137,2	138,5	134,9	136,0	
7	124,8 ^a)	126,3	121,1	131,8	132,0	
8	28,7	127,7	123,8	127,9	129,9	
9	28,7	127,7	123,8	129,8	129,9	
10	124,8 ^b)	126,3	121,1	126,5	132,0	
11	135,0	137,2	138,5	138,8	136,0	
12	40,2	40,4	40,7 40,5		135,5	
13	27,2	27,1	27,1	27,0	125,1	
14	124,7 ^b)	124,4	124,4	124,6 ^c)	126,9	
15	130,9	131,2	131,2	131,3	134,9	
16	25,8	25,8	25,8	25,8	26,2	
$CH_3 - C(2)$	17,7	17,7	17,7	18,4	18,4	
$CH_3 - C(6)$	16,1	16,7	16,5	12,8	12,9	
$CH_3 - C(11)$	16,1	16,7	16,5	16,8	12,9	
CH ₃ -C(15)	17,7	17,7	17,7	17,7	18,4	

Tab.3. Chemische Verschiebungen (gegenüber Tetramethylsilan (=0 ppm; ±0,1 ppm)) im ¹³C-NMR-Spektrum von 6, (all-E)-7, (Z)-7, 8 und 9 ((D₆)Benzol, ca. 50 mg/0,5 ml)

Vergleich der reduzierten Aufspaltungen der ${}^{1}J(C, H)$ -Kopplungen in den 'off-resonance'-Spektren ohne weiteres zugeordnet werden können, ist für die Analyse der konjugierten Doppelbindungssysteme in 8 und 9 der oben erwähnte Struktureffekt von Bedeutung. Als Ausgangspunkte für die Lösung dieses Zuordnungsproblems wurden die vollständig analysierten 13 C-NMR-Spektren von (all-*E*)-7 und β -Carotin [21] benutzt.

Die Einführung der C(4), C(5)-Doppelbindung in (all-E)-7 (\rightarrow 8) eliminiert den + M-Effekt der C(5)-Methylengruppe (bzw. ersetzt ihn durch die +M-Effekte der weiterentfernten, endständigen CH₃-Gruppen). Deshalb ist für die β (=C(7))-, δ (=C(9))- und ζ (=C(11))-C-Kerne in 8 eine mit zunehmender Entfernung kontinuierlich abnehmende Entschirmung verglichen mit (all-E)-7 zu erwarten. Im Gegensatz dazu sollten die y(=C(8))- und ε (=C(10))-C-Atome nur geringfügige Effekte zeigen. Die Durchsicht des Datenmaterials ergibt, dass aufgrund dieses Struktureffekts zunächst nur das quartäre C-Atom C(11) und die beiden unbeeinflussten Signale von C(10) und C(8) sicher zugeordnet werden können. Für C(7) und C(9) kommen dagegen noch 4 der 5 verbleibenden Olefin-d in Frage ($\delta > 126,3$ ppm). Beim Übergang $8 \rightarrow 9$ werden C(7) und C(10) sowie C(8) und C(9) identisch, und ausserdem müssen C(8) und C(10) nach tieferem Feld wandern und zwar C(10) stärker als C(8). Somit kann das Signal bei 126,9 ppm in 9 weder zu C(7)/C(10) noch zu C(8)/C(9) gehören. Daraus folgt aber sofort, dass der Pik bei 126,9 ppm in Spektrum von 8 ebenfalls nicht mehr für C(7) oder C(9) in Frage kommt, denn beim Übergang $8 \rightarrow 9$ sind keine Effekte auf C(7) und C(9) zu erwarten. Für die zuletzt genannten C-Atome bleiben in 8 also die 3 Resonanzen bei 135,5, 131,8 und 129,8 ppm und in 9 diejenigen bei 135,5, 132,0 und 129,9 ppm übrig. Durch Vergleich der analogen «Mittelstücke» von 9 und β -Carotin kann die Absorptionslinie bei 135,5 ppm sofort eliminiert werden, denn in β -Carotin erscheinen die C(8)/C(9) und C(7)/C(10) entsprechenden Signale bei 130,0 ppm (C(15)) und bei 132,4 ppm (C(14)), also gegenüber 135,5 ppm bei deutlich höherem Feld. Das widerspricht der Erwartung, dass die Signale von C(7)/C(10) und C(8)/C(9) beim Übergang $9 \rightarrow \beta$ -Carotin durch die Aufhebung der + M-Effekte von H₃C-C(1) und H₃C-C(16) etwas nach *tieferem* Feld verschoben werden sollten. So bleibt schliesslich nur noch eine Zuordnungsmöglichkeit offen: In 9 absorbieren C(8)/C(9) bei 129,9 ppm, C(7)/C(10) bei 132,0 ppm, und in 8 gehören die Signale bei 131,8 und 129,8 ppm zu C(7) bzw. C(9).

Eine ganz analoge Argumentation ermöglicht die Zuordnung der sp²-Signale von C(3) bis C(5) in 8 und 9. Für die Identifikation der noch nicht zugeordneten, quartären C-Atome C(2) und C(6) wurde zusätzlich die Tatsache herangezogen, dass im System Axerophthen/ β -Carotin [22] selbst das κ -C-Atom (=C(5)) durch die Aufhebung des + M-Effektes der endständigen Methylgruppe noch um 0,5 ppm nach tieferem Feld verschoben wird.

In Schema 3 sind die Auswirkungen zusammengefasst, welche durch die Einführung der C(4), C(5)- und der C(12), C(13)-Doppelbindung an den ¹³C-NMR-Signalen der restlichen sp²-C-Atome beobachtet werden. Die numerische Übereinstimmung und die «Symmetrie» der Effekte sind ein weiteres Indiz für die Richtigkeit der getroffenen Zuordnungen.

Zum Schluss soll noch auf *Tab.4* hingewiesen werden. Darin sind alle ¹H- und ¹³C-NMR-Lageverschiebungen zusammengefasst, welche durch die Einführung einer (Z)-konfigurierten C(8)/C(9)-Doppelbindung in (all-*E*)-7 (\rightarrow (Z)-7) verursacht werden. Es lässt sich gute Übereinstimmung mit den Werten von (3*S*, 3'*S*)-Astaxanthin und seinem 15-*cis*-Isomeren feststellen [19].

abc = abc									
C(1)	C(2)	C(3)	C(4)	C(5)	C(6)	C(7)	C(8)	$CH_3 - C(2)$	CH3-C(6)
< 0,2	< 0,2	< 0,2	< 0,2	+ 0,28	+ 1,24	- 5,14	- 3,95	< 0,2	- 0,25
3 H-C(1)	H-C(2)	H-C(3)	H-C(4)	H-C(5)	H-C(6)	H-C(7)	H-C(8)	CH3-C(2)	CH ₃ -C(6)
- 0,01		-0,01	< 0,02	< 0,02	-	+ 0,50	- 0,21	- 0,02	< 0,01

Tab. 4. ¹H- und ¹³C-NMR-Verschiebungsänderungen $\Delta = \delta(Z) - \delta_{(all-E)}$ für (all-E)-7 und (Z)-7

Wir danken dem Schweizerischen Nationalfonds zur Förderung der wissenschaftlichen Forschung und der Firma F. Hoffmann-La Roche & Co. AG (Basel) für die Unterstützung dieser Arbeit. Besonderer Dank gilt Herrn Dr. H. Mayer und seiner Gruppe für die anregenden Diskussionen und den Herren Drs. L. Chopard, G. Englert und W. Vetter sowie Herrn W. Meister für die Aufnahme von Spektren. Ferner danken wir auch Herrn Dr. H.P. Kellerhals (Firma Spectrospin AG, Fällanden) und Herrn Dr. J. Wenger (Firma Socar AG, Dübendorf) für die Überlassung einer Probe von 8,8'-Diapocarotin sowie Herrn Dr. M. Läderach (Universität Bern) für die Abfassung des vorliegenden Manuskripts.

Experimenteller Teil

Allgemeines. Sämtliche Operationen wurden unter N₂ oder Ar durchgeführt und die Reaktionslösungen vor direkter Lichteinwirkung geschützt. In einzelnen Fällen war es erforderlich, die Reaktionsgefässe vor Gebrauch auszuheizen (120°). Sämtliche Lösungsmittel wurden nach üblichen Methoden [23] vorgereinigt und über Molekularsieb aufbewahrt. Schmelzpunkte wurden in offenen Kapillaren gemessen und sind unkorrigiert. UV/VIS-Spektren: Perkin-Elmer 554 (Lösungsmittel Uvasol, Merck); Angabe von λ_{max} in nm. IR-Spektren: Perkin-Elmer PE 457; Angabe von v_{max} in cm⁻¹, w = schwache, m = mittlere und s = starke Absorption. ¹H-NMR-Spektren: EM-360 L (Fa. Varian) bei 60 MHz; WP-80 (Fa. Bruker-Spectrospin) bei 80 MHz; WH-400 (Fa. Bruker-Spectrospin) bei 400 MHz. ¹³C-NMR-Spektren: XL-100-15 (Fa. Varian) bei 25,2 MHz. Chemische Verschiebungen δ in ppm bzgl. Tetramethylsilan (= 0 ppm) als internem Standard, Kopplungskonstanten J in Hz; s = Singulett, d = Dublett, t = Triplett, q = Quadruplett, m = Multiplett, br. = breites Signal. Massenspektren: Varian-MAT, CH-7a und MS 9 (AEI, Manchester) beide mit direkter Probeneinführung. Ionisierungsspannung 70 eV; Angabe von m/z (% relative Intensität). Abkürzungen: RV. = Rotationsverdampfer, RT. = Raumtemperatur.

2,6,11,15-Tetramethyl-2,6,10,14-hexadecatetraen (6). Nach [8]: 1,1 g (95%) Isomerengemisch. Mittels Hochdruckchromatographie (*LiChrosorb SI 60*, bzw. *LiChroprep SI 60*; Hexan mit 0,05% MeCN; Detektion bei 220 nm) wurde 6 vom geringen Anteil des bei der Kupplung gebildeten γ -Adduktes (= Isodigeranyl) abgetrennt. Es wurden jeweils Fraktionen von je 2 ml Lösung (60 mg Isomerengemisch in Hexan) auf die Säule injiziert. Die Trennung dauerte 100 Min. bei einer Flussrate von 4 ml/Min. und ergab 72% (bzgl. Isomerengemisch 6/Isodigeranyl). IR (CHCl₃): 1375m, 1440m, 2800–3000s. ¹H-NMR, ¹³C-NMR: s. *Tab. 1–3*. MS (20°): 274 (4, M^+), 205 (2), 163 (4), 150 (7), 137 (11), 123 (8), 109 (7), 95 (16), 81 (47), 69 (100), 41 (24).

2,6,11,15-Tetramethyl-2,6,8,10,14-hexadecapentaen (7). a) Nach [14]: 91% (E/Z)-Gemisch ($E/Z = 64:36)^3$).

b) Dimerisierung von 13: Eine Aufschlämmung von 1,44 g (3 mmol) Geranyl-Wittig-Salz 13 in 150 ml abs. THF wurde bei 0° mit 5,56 ml BuLi (0,56M Lösung in Hexan) versetzt. Die erst dunkelrote Ylidfarbe verschwand allmählich. Die Reaktion dauerte 24 Std., dann wurde i.RV. eingedampft, der Rückstand in Petroläther aufgenommen und durch eine kurze, mit Kieselgel gefüllte Fritte gesogen. Dann wurde durch Säulenchromatographie (Kieselgel, Toluol) vom Triphenylphosphin abgetrennt: 305 mg (37%) 7 als (8*E*/8*Z*)-Gemisch (*E*/*Z* = 55:45)³). IR (CHCl₃): 963w, 1110s, 1380m, 1445m, 1600w, 1640w, 2860s, 2920s, 2970s. UV/VIS (Hexan): 274, 284, 296. ¹H-NMR, ¹³C-NMR: s. *Tab. 1–3*. MS (60°): 272 (21, M^+), 203 (46), 159 (24), 145 (33), 119 (36), 105 (40), 91 (50), 69 (100), 41 (98).

3,7-Dimethyl-2,4,6-octatriensäure-äthylester (17). Eine Lösung von 18 g (68 mmol) (2-Methyl-3-äthoxycarbonyl-2-propenyl)phosphonsäure-diäthylester (16) in 60 ml THF wurde bei 0° zur Suspension von 4,02 g NaH (ca. 60proz.) in frisch destilliertem THF zugetropft. Nach 45 Min. Rühren wurden 5,1 g (61 mmol) 3-Methyl-2butenal (15) in 30 ml THF bei 0° zugetropft. Nach 16 Std. Rühren bei RT. wurde das Gemisch auf eine NH₄Cl/Eislösung gegossen und 3mal mit Et₂O extrahiert. Die vereinigten Et₂O-Phasen wurden mit H₂O gewa schen, über Na₂SO₄ getrocknet und i.RV. eingedampft. Säulenchromatographische Trennung an Kieselgel (Toluol) ergab 9,7 g (82%) 17 als schwach gelbes Öl. IR (CHCl₃): 1240s, 1720s. UV/VIS (THF): 304. ¹H-NMR (80 MHz, CDCl₃): 1,25 (t, J = 7, 3 H, CH₃CH₂O); 1,84 (s, 6 H, 3 H–C(8), CH₃–C(7)); 2,04 (d, 3 H, CH₃–C(3) von (2Z)); 2,35 (d, 3 H, CH₃–C(3) von (2Z)); 4,2 (g, J = 7, 2 H, CH₃CH₂O); 5,66 (s, 1 H, H–C(2) von (2Z)),

³) Die Isomerenverhältnisse wurden sowohl aus den ¹H- wie aus den ¹³C-NMR-Spektren ermittelt.

5,78 (*s*, 1 H, H–C(2) von (2*E*)); 5,98 (*d*, 1 H, H–C(6) von (2*E*)); 6,09 (*d*, 1 H, H–C(6) von (2*Z*)); 6,16 (*d*, J = 15, 1 H, H–C(4) von (2*E*)); 6,65–7,08 (*m*, 1 H, H–C(5) von (2*E*) und (2*Z*)); 7,71 (*d*, J = 15, 1 H, H–C(4) von (2*Z*)). MS (20°): 194 (*M*⁺), 165, 149, 121, 84, 46, 28.

(all-E)-3,7-Dimethyl-2,4,6-octatriensäure (18). Ein Gemisch von 9,7 g (50 mmol) 17 und 100 ml 2N KOH/ MeOH wurde 3 Std. unter Rückfluss gekocht. Dann wurde auf Eis gegossen, mit 2N HCl angesäuert und 3mal mit Et₂O extrahiert. Die vereinigten Et₂O-Phasen wurden mit H₂O neutral gewaschen, über Na₂SO₄ getrocknet und eingedampft. Der Rückstand wurde aus CH₂Cl₂/Petroläther kristallisiert: 3,5 g (42 %) 18 als feine, gelborange Nadeln vom Schmp. 182°. IR (CHCl₃): 960s, 1585w, 1670m, 2600–3200m. UV/VIS (CH₂Cl₂): 305. ¹H-NMR (80 MHz, CD₂Cl₂): 1,86 (s, 6 H, 3 H–C(8), CH₃–C(7)); 2,33 (s, 3 H, CH₃–C(3)); 5,77 (s, 1 H, H–C(2)); 5,98 (d, J = 11, 1 H, H–C(6)); 6,2 (d, J = 15, 1 H, H–C(4)); 6,95 (dd, J = 11, 15, 1 H, H–C(5)). MS (20°): 166 (M⁺), 151, 121, 105, 91, 79, 45, 43, 28.

(all-E)-3,7-Dimethyl-2,4,6-octatriensäure-methylester (19). Aus 2,47 g (14,9 mmol) 18, 5,9 g K₂CO₃ und 100 ml Äthylmethylketon wurde eine Aufschlämmung hergestellt. Zu der unter Rückfluss (79°) kochenden Lösung wurden 12 ml MeI getropft. Dann wurde 3 weitere Std. unter Rückfluss gekocht. Die Aufarbeitung erfolgte durch Abnutschen, Waschen mit Et₂O und Eindampfen. Der Rückstand wurde zwischen Et₂O/H₂O verteilt, die Et₂O-Phase über Na₂SO₄ getrocknet und eingedampft. Nach der säulenchromatographischen Reinigung an Aluminiumoxid (Toluol) wurden 2,3 g (87%) orange Kristalle erhalten. ¹H-NMR (60 MHz, CDCl₃): 1,8 (s, 6 H, 3 H–C(8), CH₃–C(7)); 2,3 (s, 3 H, CH₃–C(3)); 3,65 (s, 3 H, CH₃O); 5,73 (s, 1 H, H–C(2)); 5,9–7,1 (3 H, H–C(4), H–C(5), H–C(6)). MS (20°): 180 (M^+), 121, 105, 91, 79, 77, 28.

(all-E-)-3, 7-Dimethyl-2, 4, 6-octatrienol (20). Eine Lösung von 2,3 g (12,9 mmol) 19 in 100 ml abs. Et₂O wurde bei -10° zur Suspension von 1,14 g (30 mmol) LiAlH₄ in 100 ml Et₂O getropft. Nach 45 Min. wurde mit Eis/H₂O versetzt und zwischen Et₂O/H₂O verteilt. Die Et₂O-Phase wurde neutral gewaschen, über Na₂SO₄ getrocknet und eingedampft: 2 g (100%) 20 als schwach gelbe, semikristalline Substanz, die sofort zur Oxydation eingesetzt wurde. UV/VIS (Petroläther): 276. MS (45°): 152 (M^+), 121, 91, 67, 41, 32, 28.

(all-E)-3,7-Dimethyl-2,4,6-octatrienal (21). Eine Lösung von 2 g (13,2 mmol) 20 in wenig Petroläther wurde bei 0° innert 3 Std. zur Suspension von 9,5 g MnO₂ in Petroläther getropft. Nach 16 Std. wurde filtriert und der Petroläther i.RV. eingedampft. Der Rückstand wurde aus Et₂O/Petroläther kristallisiert: 1,77 g (90%) 21 als gelbe, längliche Nadeln. Zur Entfernung von ca. 5% (2Z)-Isomeren wurde aus Petroläther umkristallisiert. ¹H-NMR (80 MHz, (D₆)Aceton): 1,86 (s, 6 H, 3 H–C(8), CH₃-C(7)); 2,3 (s, 3 H, CH₃-C(3)); 5,85 (d, J = 8, 1 H, H–C(2)); 6,0 (d, J = 10, 1 H, H–C(6)); 6,27 (d, J = 16, 1 H, H–C(4)); 7,09 (dd, J = 10, 16, 1 H, H–C(5)); 10,07 (d, J = 8, 1 H, H–C(1)). MS (20°): 150 (80, M^+), 135, 107, 91, 79, 69, 43, 28.

(all-E)-2,6,11,15-Tetramethyl-2,4,6,8,10,14-hexadecahexaen (8). Zur Aufschlämmung von 3,45 g (7,21 mmol) Geranyl-Wittig-Salz 13 in 60 ml abs. THF wurden nach Abkühlen auf 0° 2,44 ml BuLi (ca. 2,5M Lösung in THF) aus einer Spritze gegeben. Die rote Ylidlösung wurde auf -78° gekühlt. Nach 15 Min. Rühren wurden 648 mg (4,5 mmol) 21 in wenig THF zugetropft. Die Ylidfarbe verschwand allmählich. Dann wurde nochmals mit 4,0 ml BuLi tropfenweise versetzt und die Reaktionstemp. auf -40° ansteigen gelassen. Schliesslich wurde noch 1 ml BuLi zugegeben, bis die Lösung tief dunkelrot wurde. Bei -30° wurde 60 Min. gerührt und dann mit 8 ml MeOH versetzt. Die orange-gelbe Lösung wurde noch 2 Std. bei RT. gerührt. Die Aufarbeitung erfolgte durch Verteilen zwischen Petroläther/MeOH (mit 10° H₂O), Waschen mit H₂O, Trocknen der Petroläther-Phase mit Na₂SO₄ und Eindampfen i.RV. Der orange, feste Rückstand wurde säulenchromatographisch an Aluminiumoxid (Hexan) gereinigt. Kristallisieren aus Hexan bei -78° ergab 390 mg (32%) 8 als schwach gelbe Nadeln vom Schmp. 54°. IR (CHCl₃): 963s, 1375s, 1440s, 1625m, 2860s, 2907s, 2960s. UV/VIS (Hexan): 313, 327, 343, 362. ¹H-NMR, ¹³C-NMR: s. *Tab. 1–3*. MS (60°): 272 (18, M^+), 201 (41), 159 (22), 145 (29), 119 (28), 105 (29), 91 (30), 69 (100), 55 (18), 41 (80).

(all-E)-2,6,11,15-Tetramethyl-2,4,6,8,10,12,14-hexadecaheptaen (9). In ein Bombenrohr wurden 1 g (2,67 mmol) Dimethylallyl-Wittig-Salz **22** und 174 mg (1,06 mmol) C_{10} -Dialdehyd **23** unter Zusatz von 0,5 ml (5,3 mmol) 1,2-Epoxybutan gegeben. Die Reaktion erfolgte bei 110°. Nach 35 Std. wurde zwischen Hexan/MeOH (mit 5% H₂O) verteilt. Nach dem Eindampfen der Hexanfraktion wurde an Aluminiumoxid (Toluol) vom C_{15} -Monoaldehyd abgetrennt und aus CH₂Cl₂/MeOH kristallisiert: 178 mg (62%) **9** als sehr feine orange Nadeln vom Schmp. 154°. IR (CHCl₃): 963s, 1375m, 1440m, 1582w, 1630w, 2860s, 2910s, 2960s. UV/VIS (Hexan): 357, 374, 394, 419. ¹H-NMR und ¹³C-NMR: s. *Tab. 1–3*. MS (85°): 268 (100, M^+), 253 (3), 225 (5), 211 (4), 199 (13), 157 (45), 143 (22), 134 (31), 91 (38), 69 (35), 55 (18), 41 (25), 28 (50).

LITERATURVERZEICHNIS

- [1] H. Pfander & F. Wittwer, Helv. Chim. Acta 58, 1608 (1975).
- [2] H. Pfander & F. Wittwer, Helv. Chim. Acta 58, 2233 (1975).
- [3] R. Kuhn & A. Winterstein, Ber. Dtsch. Chem. Ges. 67, 344 (1934).
- [4] R. Buchecker & C.H. Eugster, Helv. Chim. Acta 56, 1121 (1973).
- [5] H. Mayer, Pure Appl. Chem. 51, 535 (1979).
- [6] B.H. Davies & R.F. Taylor, Pure Appl. Chem. 47, 221 (1976).
- [7] J. W. Porter & R.E. Lincoln, Arch. Biochem. Biophys. 27, 390 (1950).
- [8] A. Grieco & Y. Masaki, J. Org. Chem. 39, 2135 (1974).
- [9] D. Barnard & L. Bateman, J. Chem. Soc. 1950, 932.
- [10] N.A. Sörensen, T. Gillebo, H. Holtermann & J.S. Sörensen, Acta Chem. Scand. 5, 757 (1951).
- [11] Y.A. Katzenellenbogen & R.S. Lenox, Tetrahedron Lett. 1972, 1471.
- [12] Y.B. Davis, L.M. Jackmann, P.T. Siddons & B.C.L. Weedon, J. Chem. Soc. C 1966, 2154.
- [13] N. Kahn, D.E. Loeber, T.P. Toube & B.C.L. Weedon, J. Chem. Soc., Perkin 1 1975, 1457.
- [14] L. Barlow & G. Pattenden, J. Chem. Soc., Perkin 1 1976, 1029.
- [15] IUPAC Commission on Nomenclature of Organic Chemistry & IUPAC-IUB Commission on Biochemical Nomenclature, 'Nomenclature of Carotenoids' (Rules approved 1974), Pure Appl. Chem. 41, 407 (1975).
- [16] E. Axelrod, G. Milue & E. van Tamelen, J. Am. Chem. Soc. 92, 2139 (1970).
- [17] M. Julia & D. Uguen, Bull. Soc. Chim. Fr. 1976, 515.
- [18] H.M. McConnell, A.D. McLean & C.A. Reilly, J. Chem. Phys. 23, 1152 (1955); B. Dischler & W. Maier, Z. Naturforsch. 16 a, 318 (1961); B. Dischler & G. Englert, ibid. 16 a, 1180 (1961).
- [19] G. Englert, F. Kienzle & K. Noack, Helv. Chim. Acta 60, 1209 (1977).
- [20] W. Regel & W. v. Philipsborn, Helv. Chim. Acta 52, 1354 (1969).
- [21] G. Englert, Helv. Chim. Acta 58, 2367 (1975).
- [22] W. Bremser & J. Paust, Org. Magn. Reson. 6, 433 (1974).